Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.355
Filtrar
1.
Molecules ; 29(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474528

RESUMO

Amides containing methyl esters of γ-aminobutyric acid (GABA), L-proline and L-tyrosine, and esters containing 3-(pyridin-3-yl)propan-1-ol were synthesized by conjugation with 3,5-di-tert-butyl-4-hydroxybenzoic, an NSAID (tolfenamic acid), or 3-phenylacrylic (cinnamic, (E)-3-(3,4-dimethoxyphenyl)acrylic and caffeic) acids. The rationale for the conjugation of such moieties was based on the design of structures with two or more molecular characteristics. The novel compounds were tested for their antioxidant, anti-inflammatory and hypolipidemic properties. Several compounds were potent antioxidants, comparable to the well-known antioxidant, Trolox. In addition, the radical scavenging activity of compound 6 reached levels that were slightly better than that of Trolox. All the tested compounds demonstrated remarkable activity in the reduction in carrageenan-induced rat paw edema, up to 59% (compound 2, a dual antioxidant and anti-inflammatory molecule, with almost 2.5-times higher activity in this experiment than the parent NSAID). Additionally, the compounds caused a significant decrease in the plasma lipidemic indices in Triton-induced hyperlipidemic rats. Compound 2 decreased total cholesterol by 75.1% and compound 3 decreased triglycerides by 79.3% at 150 µmol/kg (i.p.). The hypocholesterolemic effect of the compounds was comparable to that of simvastatin, a well-known hypocholesterolemic drug. Additionally, all compounds lowered blood triglycerides. The synthesized compounds with multiple activities, as designed, may be useful as potential candidates for conditions involving inflammation, lipidemic deregulation and oxygen toxicity.


Assuntos
Anti-Inflamatórios não Esteroides , Antioxidantes , Ratos , Animais , Anti-Inflamatórios não Esteroides/química , Antioxidantes/química , Peroxidação de Lipídeos , Anti-Inflamatórios/farmacologia , Triglicerídeos , Edema/tratamento farmacológico , Carragenina/efeitos adversos
2.
Chem Biol Drug Des ; 103(3): e14514, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531606

RESUMO

Series of 7-(Trifluoromethyl) substituted indolizine 4a-g was synthesized using the one-pot method. Spectroscopic techniques such as IR, 1H-NMR, 13C-NMR, and HRMS were used for the structure confirmation of newly synthesized compounds. These 4a-g compounds were tested for their anti-inflammatory activity. In this study, we identified novel indolizine derivative compounds 4a-g selectively targeting COX-2 enzyme, tumor necrosis factor-α (TNF-α) and, interleukin-6 (IL-6). The in silico docking studies of 4a-g showed that these compounds have a higher affinity for COX-2 enzyme, TNF- α, and IL-6. In silico ADME profile analysis predicts that these compounds have good gastrointestinal tract and blood-brain barrier absorption. In vitro studies showed that compound 4d significantly reduces the level of COX-2 enzymes as compared to indomethacin. Compounds 4e, 4f, and 4a were also found to significantly reduce the level of TNF-α, while compounds 4f, 4g, and 4d, showed a reduction in the level of IL-6 when compared to indomethacin. Compounds 4a, 4d, and 4f also reduces nitric oxide (NO) level, compared to indomethacin. Overall, the current study illustrates significant anti-inflammatory activities of these novel 7-(Trifluoromethyl) substituted indolizine derivatives.


Assuntos
Anti-Inflamatórios não Esteroides , Indolizinas , Anti-Inflamatórios não Esteroides/química , Ciclo-Oxigenase 2/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa , Interleucina-6 , Anti-Inflamatórios/farmacologia , Indometacina , Indolizinas/química , Simulação de Acoplamento Molecular
3.
Future Med Chem ; 16(4): 349-368, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38288554

RESUMO

Background: The search is ongoing for ideal anti-inflammatory and analgesic agents with promising potency and reasonable selectivity. Methods: New N1-substituted pyrazoles with or without an acetamide linkage were synthesized and evaluated for their anti-inflammatory and analgesic activities. COX inhibitory testing, molecular docking, molecular dynamics simulation and antiproliferative activity assessments were performed. Results: All compounds exhibited anti-inflammatory activity up to 90.40% inhibition. They also exhibited good analgesic activity with up to 100% protection. N1-benzensulfonamides 3d, 6c and 6h were preferentially selective agents toward COX-2. Compound 3d showed good cytotoxicity against MCF-7 and HTC116 cancer cell lines. Molecular modeling studies predicted the binding pattern of the most active compounds. Molecular dynamics confirmed the docking results. All compounds showed remarkable pharmacokinetic properties.


Assuntos
Anti-Inflamatórios , Pirazóis , Pirazóis/farmacologia , Pirazóis/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Anti-Inflamatórios/farmacologia , Analgésicos/farmacologia , Analgésicos/química , Ciclo-Oxigenase 2/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química
4.
Future Med Chem ; 16(4): 311-334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38293746

RESUMO

Background: Dual COX/5-LOX inhibition is a bright strategy for developing new potent and safe anti-inflammatory agents. Methods: New imines were synthesized and evaluated for their anti-inflammatory activity. The most active compounds were further investigated for their safety profile. Their molecular docking and physicochemical parameters were assessed. A new LC-MS/MS method was developed for the quantification of compound 4d in rat plasma. Results: Synthesized compounds were found to have anti-inflammatory activity (77-88% edema inhibition). In addition, 4d, 5m and 7d showed analgesic activity (92.50, 95.71 and 96.28% protection, respectively). 4d showed dual COX-2/5-LOX activity. Molecular docking expected the binding pattern of compounds in COX-1, COX-2 and 5-LOX active sites. The in vivo pharmacokinetic parameters of compound 4d were also obtained.


Assuntos
Anti-Inflamatórios , Espectrometria de Massas em Tandem , Ratos , Animais , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Cromatografia Líquida , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/química , Inibidores de Ciclo-Oxigenase 2/química , Relação Estrutura-Atividade , Anti-Inflamatórios não Esteroides/química , Estrutura Molecular
5.
Bioorg Chem ; 144: 107136, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38271823

RESUMO

Two innovative series derived from nicotinic acid scaffold were synthesized and evaluated for their anti-inflammatory activity. Ibuprofen, celecoxib and indomethacin were used as standard drugs. All the newly synthesized compounds were in vitro screened for their anti-inflammatory activity adopting 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide dye (MTT), as well as Griess assays. The results showed that all compounds exhibited significant anti-inflammatory activity without affecting the viability of the macrophages compared to ibuprofen. In addition, compounds 4d, 4f, 4g, 4h and 5b exhibited the most potent nitrite inhibition activity and consequently superior anti-inflammatory activity with MTT results ranging between values 86.109 ± 0.51 to 119.084 ± 0.09. The most active compounds were subjected to evaluation of TNF-α, IL-6, iNOS and COX-2 levels in LPS/INF γ-stimulated RAW 264.7 macrophage cells in comparison to ibuprofen as a reference compound. The five compounds showed comparable inhibition potency of these inflammatory cytokines compared to ibuprofen. Same compounds were further in vivo evaluated for their anti-inflammatory activity via carrageenan induced arthritis in rats. Regarding the ulcerogenic profile, compound 4h showed mild infiltration of gastric mucosa superb to compound 5b displayed severe gastritis. Molecular docking of 4h and 5b in the COX-2 active site was performed to evaluate their preferential COX-2 inhibitory potency. The docking results were in accordance with the biological findings.


Assuntos
Ibuprofeno , Niacina , Ratos , Animais , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Ciclo-Oxigenase 2 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Anti-Inflamatórios não Esteroides/química , Relação Estrutura-Atividade
6.
Int J Pharm ; 653: 123857, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38281693

RESUMO

Multidrug therapeutic hybrids constitute a promising proposal to overcome problems associated with traditional formulations containing physical mixtures of drugs, potentially improving pharmacological and pharmaceutical performance. Indomethacin (IND) is a non-selective non-steroidal anti-inflammatory drug (NSAIDs) that acts by inhibiting normal processes of homeostasis, causing a series of side effects, such as gastrointestinal symptoms. Proton pump inhibitors, such as omeprazole (OME), have been used to treat such gastrointestinal tract symptoms. In this work, two new multidrug therapeutic hybrids were prepared (an IND:OME salt and an IND:OME co-amorphous system) by ball mill grinding crystalline IND and OME under different conditions, i.e., liquid assisted grinding (LAG) with ethanol and dry grinding, respectively. The crystalline salt returned to a neutral state co-amorphous system when submitted to ball mill grinding in the absence of solvent (dry grinding), but the reverse process (LAG of the IND:OME co-amorphous system) showed partial decomposition of OME. The IND:OME co-amorphous system showed a higher physical stability than the neat IND and OME amorphous materials (with an amorphous stability longer than 100 days, compared to 4 and 16 h for the neat amorphous drugs, respectively, when stored at dry conditions at room temperature). Furthermore, OME presented a higher chemical stability in solution when dissolved from a salt form than from the pure crystalline form. The dissolution studies showed a dissolution enhancement for IND in both salt (1.8-fold after 8 h of dissolution) and co-amorphous (2.5-fold after 8 h of dissolution) forms. Anti-inflammatory activity using a mice paw oedema model showed an increase of the pharmacological response to IND at a lower dose (∼5mg/kg) for both IND:OME salt (2.8-fold) and IND:OME co-amorphous system (3.2-fold) after 6 h, when compared to the positive control group (IND, administered at 10 mg/kg). Additionally, the anti-inflammatory activity of both salt and co-amorphous form was faster than for the crystalline IND. Finally, an indomethacin-induced gastric ulceration assay in mice resulted in a higher mucosal protection at the same dose (40 mg/kg) for both IND:OME salt and IND:OME co-amorphous system when compared with crystalline OME.


Assuntos
Indometacina , Omeprazol , Camundongos , Animais , Indometacina/química , Estabilidade de Medicamentos , Cristalização , Difração de Raios X , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Cloreto de Sódio , Solubilidade
7.
Biol Pharm Bull ; 47(1): 213-220, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38057117

RESUMO

Diclofenac instillation is useful in preventing intraoperative miosis and macular edema caused by postoperative inflammation in cataract surgery; however, optimum efficacy is not attained when the instilled diclofenac strongly binds to albumin in patients' aqueous humor. Therefore, a method that inhibits diclofenac binding and increases the concentration of its free fraction is needed. We conducted a basic study regarding the effects of inhibitors on the binding of instilled diclofenac to albumin and endogenous substances in aqueous humor. Aqueous humor samples from 16 patients were pooled together for analysis. The free fraction of diclofenac was measured using ultrafiltration methods in various experiments with pooled and mimic aqueous humor. Free fraction of diclofenac, a site II drug, in pooled aqueous humor was 0.363 ± 0.013. The binding of diclofenac in the presence of phenylbutazone (PB), a site I inhibitor, was significantly inhibited (free fraction = 0.496 ± 0.013); however, no significant inhibition by ibuprofen, a site II inhibitor, (free fraction = 0.379 ± 0.004), was observed. The unexpected result was due to free fatty acids (FFAs; palmitic acid (PA)) and L-tryptophan (Trp). The inhibition of diclofenac binding by PB in the mimic aqueous humor containing these endogenous substances revealed significant binding inhibition in the presence of PA and Trp. Diclofenac is strongly rebound from site II to site I in the presence of FFAs and Trp in the aqueous humor because FFAs and Trp induce a conformational change in albumin. Therefore, PB significantly inhibits the binding of diclofenac to albumin.


Assuntos
Catarata , Diclofenaco , Humanos , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Diclofenaco/química , Anti-Inflamatórios não Esteroides/química , Humor Aquoso/metabolismo , Catarata/tratamento farmacológico , Albuminas/metabolismo
8.
J Inorg Biochem ; 250: 112420, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918185

RESUMO

Two copper(I) polymorphs of formula [Cu(SALH)(TPP)3] (1a and 1b) were prepared by the conjugation of the Non-Steroidal Anti-Inflammatory Drug (NSAID) salicylic acid (SALH2) with the mitochondriotropic agent triphenylphosphine (TPP) via metal ion. For comparison, the isomorph [Ag(SALH)(TPP)3] (2) was prepared. The conjugates 1a, 1b and 2 were characterized by melting point (m.p.), Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-Visible (UV-Vis) spectroscopy and nuclear magnetic resonance (1H NMR). The crystal structures of 1a, 1b and 2 were confirmed by X-ray diffraction crystallography (XRD). The ex vivo binding affinity of 1-2 towards CT (calf thymus)-DNA was studied by UV, fluorescence, viscosity and DNA Thermal Denaturation studies. Their inhibitory activity against lipoxygenase (LOX) (an enzyme which is mainly located in the mitochondrion) was determined. The in vitro activity of 1-2 was evaluated against human breast cancer cell lines MCF-7 (hormone depended (HD)) and MDA-MB 281 (hormone independent (HI)) cells. Compounds 1-2 inhibit stronger than cisplatin the cancerous cells. The molecular mechanism of action of 1-2 was suspected by the MCF-7 cells morphology and confirmed by DNA fragmentation, Acridine Orange/Ethidium Bromide (AO/EB) Staining and mitochondrial membrane permeabilization tests.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Humanos , Feminino , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Neoplasias da Mama/tratamento farmacológico , Prata/química , DNA/química , Hormônios , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Cobre
9.
Molecules ; 28(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138595

RESUMO

Mesalamine, also called 5-ASA (5-aminosalicylic acid), is a largely used anti-inflammatory agent and is a main choice to treat Ulcerative Colitis. This report is aimed to investigate enzymatic processes involved in the oxidation of mesalamine to better understand some of its side-effects. Oxidation with oxygen (catalyzed by ceruloplasmin) or with hydrogen peroxide (catalyzed by peroxidase or hemoglobin) showed that these oxidases, despite their different mechanisms of oxidation, could recognize mesalamine as a substrate and trigger its oxidation to a corresponding quinone-imine. These enzymes were chosen because they may recognize hydroquinone (a p-diphenol) as substrate and oxidize it to p-benzoquinone and that mesalamine, as a p-aminophenol, presents some similarities with hydroquinone. The UV-Vis kinetics, FTIR and 1H NMR supported the hypothesis of oxidizing mesalamine. Furthermore, mass spectrometry suggested the quinone-imine as reaction product. Without enzymes, the oxidation process was very slow (days and weeks), but it was markedly accelerated with the oxidases, particularly with peroxidase. Cyclic voltammetry supported the hypothesis of the oxidative process and allowed a ranking of susceptibility to oxidizing mesalamine in comparison with other oxidizable drug molecules with related structures. The susceptibility to oxidation was higher for mesalamine, in comparison with Tylenol (acetaminophen) and with aspirin (salicylic acid).


Assuntos
Colite Ulcerativa , Mesalamina , Humanos , Mesalamina/química , Monofenol Mono-Oxigenase , Hidroquinonas , Anti-Inflamatórios não Esteroides/química , Peroxidase , Colite Ulcerativa/tratamento farmacológico , Oxirredução , Peroxidases , Quinonas/uso terapêutico , Catálise , Iminas
10.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959862

RESUMO

In a sustained search for novel potential drug candidates with multispectrum therapeutic application, a series of novel spirooxindoles was designed and synthesized via regioselective three-component reaction between isatin derivatives, 2-phenylglycine and diverse arylidene-imidazolidine-2,4-diones (Hydantoins). The suggested stereochemistry was ascertained by an X-ray diffraction study and NMR spectroscopy. The resulting tetracyclic heterocycles were screened for their in vitro and in vivo anti-inflammatory and analgesic activity and for their in vitro antimicrobial potency. In vitro antibacterial screening revealed that several derivatives exhibited remarkable growth inhibition against different targeted microorganisms. All tested compounds showed excellent activity against the Micrococccus luteus strain (93.75 µg/mL ≤ MIC ≤ 375 µg/mL) as compared to the reference drug tetracycline (MIC = 500 µg/mL). Compound 4e bearing a p-chlorophenyl group on the pyrrolidine ring exhibited the greatest antifungal potential toward Candida albicans and Candida krusei (MIC values of 23.43 µg/mL and 46.87 µg/mL, respectively) as compared to Amphotericin B (MIC = 31.25 and 62.50 µg/mL, respectively). The target compounds were also tested in vitro against the lipoxygenase-5 (LOX-5) enzyme. Compounds 4i and 4l showed significant inhibitory activity with IC50 = 1.09 mg/mL and IC50 = 1.01 mg/mL, respectively, more potent than the parent drug, diclofenac sodium (IC50 = 1.19 mg/mL). In addition, in vivo evaluation of anti-inflammatory and analgesic activity of these spirooxindoles were assessed through carrageenan-induced paw edema and acetic acid-induced writhing assays, respectively, revealing promising results. In silico molecular docking and predictive ADMET studies for the more active spirocompounds were also carried out.


Assuntos
Anti-Infecciosos , Hidantoínas , Simulação de Acoplamento Molecular , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios/química , Analgésicos/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Anticonvulsivantes/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
11.
Sci Rep ; 13(1): 17268, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828142

RESUMO

The synthesis, spectral properties, thermal analysis, structural characterization and in silico prediction of pharmacokinetic parameters of tetramethylammonium (compound 1) and tetraethylammonium (compound 2) salt of nimesulide were described in this article. Both compounds crystallize in the monoclinic P21/n space group, with one tetraalkylammonium cation and one nimesulide anion in the asymmetric unit and their crystal structures are stabilized by C-H···O hydrogen bonds between ions. Additionally, structures of title compounds are stabilized by π-π interactions (compound 1), or C-H···π interactions (compound 2) between nimesulide anions. The TG and DSC measurements show that compound 1 melts at a temperature higher than nimesulide, whereas the compound 2 melts at a temperature lower than nimesulide. The MALDI-TOF, 1H NMR, 13C NMR and ATR-FTIR analyses confirm the SCXRD study, that in compounds 1 and 2 nimesulide exists in an ionized form. Studies performed by SWISS ADME and ProTOX II tools, predict to be oral bioavailability of both salts obtained, and one of them (compound 1) is predicted to be well-absorbed by digestive system, while both compounds obtained are classified into toxicity class 4.


Assuntos
Anti-Inflamatórios não Esteroides , Sais , Anti-Inflamatórios não Esteroides/química , Sulfonamidas/química , Temperatura
12.
J Control Release ; 364: 272-282, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866406

RESUMO

Herein, we report a facile method for converting carboxylate-containing indomethacin (Idm) into a cyclooxygenase-2 (COX-2) selective inhibitor via the amidation of an unnatural peptide sequence (Nal-Nal-Asp). The resulting indomethacin amides (i.e., Idm-Nal-Nal-Asp) have high selectivity for COX-2, and can self-assemble into a one-component supramolecular hydrogel that acts as a 'self-delivery' system for boosting anti-inflammatory efficacy. Self-assembled Idm-Nal-Nal-Asp hydrogel robustly inhibits COX-2 expression in lipopolysaccharide (LPS)-activated Raw 264.7 macrophages while also exhibits superior anti-inflammatory and antioxidant activities via reactive oxygen species (ROS)-related NF-κB and Nrf2/HO-1 pathways. Moreover, a rabbit model of endotoxin-induced uveitis (EIU) reveals that the Idm-Nal-Nal-Asp hydrogel outperforms clinically used 0.1 wt% diclofenac sodium eye drops in terms of in vivo anti-inflammatory efficacy via topical instillation route. As a rational approach to designing and applying COX-2 selective inhibitors, this work presents a simple method for converting non-selective nonsteriodal anti-inflammatory drugs (NSAIDs) into highly selective COX-2 inhibitors that can self-assemble into supramolecular hydrogel for anti-inflammation applications.


Assuntos
Indometacina , Nanofibras , Animais , Coelhos , Indometacina/química , Indometacina/farmacologia , Ciclo-Oxigenase 2 , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Hidrogéis/química
13.
J Inorg Biochem ; 249: 112400, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844532

RESUMO

The recently isolated Sclerotinia sclerotiorum laccase was used for the degradation of sodium diclofenac, a nonsteroidal anti-inflammatory drug widely found in the aquatic environment. The Michaelis-Menten parameters, half-life of diclofenac at different pH values in presence of this enzyme and potential inhibitors were evaluated. Diclofenac-based radicals formed in presence of laccase were spin-trapped and detected using EPR spectroscopy. Almost complete diclofenac degradation (> 96%) occurred after a 30-h treatment via radical-based generated oligomers and their rapid precipitation, thus ensuring an unprecedented green formula suitable not only for degradation but also for straightforward removal of the degradation products. High performance liquid chromatography coupled with atmospheric pressure chemical ionization-ion trap mass spectrometry (HPLC-APCI-MS) analyses of the degradation products of diclofenac in aqueous dosage revealed the presence of at least seven products while HR Orbitrap MS analysis showed that the enzymatic treatment produced high molecular weight metabolites through a radical oligomerization mechanism of diclofenac. The enzymatically formed products precipitated and its constituting components were also characterized using UV-vis spectroscopy, infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA).


Assuntos
Diclofenaco , Lacase , Diclofenaco/química , Lacase/metabolismo , Anti-Inflamatórios não Esteroides/química , Cromatografia Líquida de Alta Pressão
14.
ACS Appl Bio Mater ; 6(11): 4749-4763, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864581

RESUMO

A skin wound is prone to bacterial infection and growth. An antibacterial topical hydrogel that can act as a self-drug-delivery (SDD) system is reported here. Two bidentate ligands (L2/L1) derived from imidazole/benzimidazole derivatives when reacted with Zn(NO3)2 and a series of nonsteroidal-anti-inflammatory drugs (NSAIDs) produced crystalline products, which were characterized by single-crystal X-ray diffraction (SXRD). Simple mixing of the ingredients of the crystalline products (stoichiometry guided by the corresponding crystal structure) produced an aqueous gel (DMSO/water) when the bidentate ligand was water-insoluble L2, whereas water-soluble L1 readily produced hydrogels under similar conditions. Dynamic rheology and scanning electron microscopy (SEM) were employed to characterize the gels. Zone inhibition diameters, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and hemolysis data suggested that among the hydrogelators, L1MEC derived from L1, meclofenac and Zn(NO3)2, was found to be the best against the Gram-negative bacteria Escherichia coli. The corresponding hydrogel L1MEC_HG and a piece of a dried cloth bandage coated with the hydrogel also showed appreciable activity against E. coli. The antibacterial property of L1MEC_HG against E. coli, thus demonstrated, is relevant in developing an antibacterial SDD system because E. coli is reported to be present in infected wounds.


Assuntos
Anti-Inflamatórios não Esteroides , Hidrogéis , Hidrogéis/química , Anti-Inflamatórios não Esteroides/química , Escherichia coli , Antibacterianos/química , Zinco/química , Imidazóis/farmacologia , Sistemas de Liberação de Medicamentos , Água
15.
Pharm Dev Technol ; 28(9): 811-825, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788184

RESUMO

The aim was to investigate eutectic transition during tableting and storage. Mixtures of lidocaine and series of NSAIDs with increasing melting point were used as model systems to guide formulators to scaleup eutectic forming materials gaining enhanced dissolution while avoiding deleterious physical changes. Physical mixtures of NSAIDs with lidocaine were prepared at eutectic forming ratio. These were directly compressed, dry co-ground before compression, or compressed after wet granulation. Dissolution of tablets was compared to corresponding dry co-ground mixture. Thermograms of direct compressed tablet were compared to co-ground mixture and pure compound. Stability of direct compressed tablets was assessed. Tableting initiated eutexia which enhanced dissolution of NSAIDs. Eutexia was associated with tablet softening in case of low melting point ketoprofen and aceclofenac. Wet granulation hastened eutexia developing unacceptable tablet in case ketoprofen and aceclofenac. Tablets prepared by direct compression of physical mixtures underwent gradual eutectic transition upon storage with the magnitude of eutectic transition reducing with increased melting point of NSAIDs. Ketoprofen was physically unstable but aceclofenac degraded chemically as well. Tenoxicam and meloxicam tablets were physically and chemically stable. Direct compression after physical mixing is the best tableting technique, but low melting point drugs should consider different strategy before compression.


Assuntos
Diclofenaco/análogos & derivados , Cetoprofeno , Cetoprofeno/química , Anti-Inflamatórios não Esteroides/química , Comprimidos , Lidocaína , Solubilidade
16.
Bioorg Chem ; 141: 106847, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37722268

RESUMO

The anti-inflammatory and analgesic drugs currently used are associated with several adverse effects and found to be highly unsafe for long-term use. Currently, nineteen novel bis-Schiff base derivatives (1-19) of flurbiprofen have been designed, prepared and assessed for in-vivo analgesic, anti-inflammatory and in vivo acute toxicity evaluation. The structures of the acquired compounds were deduced through modern spectroscopic techniques including HR-ESI-MS, 13C-, and 1H NMR. Amongst the series, compounds 7, 9, and 10 attributed potent activities with 93.89, 92.50, and 90.47% decreased edema, respectively compared to flurbiprofen (90.01%), however, compounds 11 and 15 exhibited significant activity of 90.00% decrease. Out of them, fourteen compounds (1-6, 8, 12-14, and 16-19) displayed good activity in the range of 68.96-86.95%. In case of an analgesic study, all the derivatives significantly (p 0.001) increased the pain threshold time particularly compound 7 had the best analgesic effect (24 ± 2.08 s) in comparison with flurbiprofen (21.66 ± 2.02 s) using hot plate test. Similarly, in the acetic acid-induced writhing test, compound 7 determined a potent inhibitory effect (60.47 %) close to flurbiprofen (59.28%). All the synthesized derivatives were found safe up to the dose of 30 mg/kg, in acute toxicity study. On a molecular scale, the synthesized compounds were modeled through a ligand-based pharmacophore study and molecular docking to have insight into the different possible interactions leading to high inhibition levels against the COX-2 enzyme.


Assuntos
Flurbiprofeno , Humanos , Flurbiprofeno/farmacologia , Flurbiprofeno/química , Inibidores de Ciclo-Oxigenase/farmacologia , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2 , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/química , Anti-Inflamatórios/química , Edema/induzido quimicamente , Edema/tratamento farmacológico , Anti-Inflamatórios não Esteroides/química , Carragenina
17.
Food Chem Toxicol ; 178: 113926, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406757

RESUMO

BACKGROUND AND OBJECTIVE: Ibuprofen, a common non-steroidal anti-inflammatory drug, is used clinically for pain relief and antipyretic treatment worldwide. However, regular or long-term use of ibuprofen may lead to a series of adverse reactions, including gastrointestinal bleeding, hypertension and kidney injury. Previous studies have shown that CYP2C9 gene polymorphism plays an important role in the elimination of various drugs, which leads to the variation in drug efficacy. This study aimed to evaluate the effect of 38 CYP2C9 genotypes on ibuprofen metabolism. METHODS: Thirty-eight recombinant human CYP2C9 microsomal enzymes were obtained using a frugiperda 21 insect expression system according to a previously described method. Assessment of the catalytic function of these variants was completed via a mature incubation system: 5 pmol CYP2C9*1 and 38 CYP2C9 variants recombinant human microsomes, 5 µL cytochrome B5, ibuprofen (5-1000 µM), and Tris-HCl buffer (pH 7.4). The ibuprofen metabolite contents were determined using HPLC analysis. HPLC analysis included a UV detector, Plus-C18 column, and mobile phase [50% acetonitrile and 50% water (containing 0.05% trifluoroacetic acid)]. The kinetic parameters of the CYP2C9 genotypes were obtained by Michaelis-Menten curve fitting. RESULTS: The intrinsic clearance (CLint) of eight variants was not significantly different from CYP2C9*1; four CYP2C9 variants (CYP2C9*38, *44, *53 and *59) showed significantly higher CLint (increase by 35%-230%) than that of the wild-type; the remaining twenty-six variants exhibited significantly reduced CLint (reduced by 30%-99%) compared to that of the wild-type. CONCLUSION: This is the first systematic evaluation of the catalytic characteristics of 38 CYP2C9 genotypes involved ibuprofen metabolism. Our results provide a corresponding supplement to studies on CYP2C9 gene polymorphisms and kinetic characteristics of different variants. We need to focus on poor metabolizers (PMs) with severely abnormal metabolic functions, because they are more susceptible to drug exposure.


Assuntos
Anti-Inflamatórios não Esteroides , Ibuprofeno , Humanos , Ibuprofeno/química , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Anti-Inflamatórios não Esteroides/química , Polimorfismo Genético , Genótipo
18.
BMC Complement Med Ther ; 23(1): 249, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468938

RESUMO

Ibuprofen is a member of the propionic acid class of nonsteroidal anti-inflammatory drugs (NSAIDs) with anti-inflammatory, analgesic, and antipyretic activities used to relieve a variety of pains. The objective of this study was to formulate, characterize and evaluate the in vitro and in vivo properties of ibuprofen formulated as solid lipid microspheres (SLMs) for enhanced delivery. The mixtures of Irvingia wombolu fat (IRW) and moringa oil (MO) each with Phospholipon® 90G (PL90G) at the ratio of 2:1 w/w were prepared by fusion, characterized and used to prepare SLMs. The SLMS were thereafter evaluated using the following parameters: particle size and morphology, stability, and encapsulation efficiency EE (%). In vitro release was carried out in phosphate buffer (pH 7.4). The ibuprofen based SLMs were also evaluated for anti-inflammatory and anti-ulcer effects using animal models. The pH showed significant increase after two months of formulation with a maximum value of 6.4 while the EE obtained were 95.6, 89.4 and 61.6% for SLMs formulated with lipid matrix of Phospholipon® 90G (1% and 2%), and MO (1%) respectively. The in vitro release showed maximum release of 87.8 and 98.97% of the two different lipid-based formulations while anti-inflammatory effect was up to 89.90% after 5 h of inducing inflammation. The SLMs did not show any lesion thus conferring gastroprotection on the formulations. The SLMs exhibited good anti-inflammatory property with gastroprotective action.


Assuntos
Ibuprofeno , Moringa , Animais , Ibuprofeno/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Microesferas , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Lipídeos
19.
Eur J Med Chem ; 259: 115662, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37482018

RESUMO

Two series of NSAIDs-EBS derivatives (5a-j and 9a-i) based on the hybridization of nonsteroidal anti-inflammatory drugs (NSAIDs) skeleton and Ebselen moiety were synthesized. Their cytotoxicity was evaluated against five types of human cancer cell lines, BGC-823 (human gastric cancer cell line), SW480 (human colon adenocarcinoma cells), MCF-7 (human breast adenocarcinoma cells), HeLa (human cervical cancer cells), A549 (human lung carcinoma cells). Moreover, the most active compound 5j showed IC50 values below 3 µM in all cancer cell lines and with remarkable anticancer activity against MCF-7 (1.5 µM) and HeLa (1.7 µM). The redox properties of the NSAIDs-EBS derivatives prepared herein were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), bleomycin dependent DNA damage and glutathione peroxidase (GPx)-like assays. Finally, TrxR1 inhibition activity assay and molecular docking study revealed NSAIDs-EBS derivatives could serve as potential TrxR1 inhibitor.


Assuntos
Adenocarcinoma , Anti-Inflamatórios não Esteroides , Antineoplásicos , Humanos , Antineoplásicos/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia
20.
Colloids Surf B Biointerfaces ; 228: 113399, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37348266

RESUMO

BACKGROUND AND OBJECTIVE: Meloxicam (MLX) is prescribed for the management of pain and inflammation allied with osteoarthritis (OA). However, MLX causes intestinal damage in long term administration. Hence, meloxicam loaded emulgel (MLX-emulgel) was optimized, formulated and examined under stringent parameters in monosodium-iodoacetate (MIA) induced knee OA in Wistar rats. METHODS AND RESULTS: Nanoemulsion of MLX was fabricated by ultrasonication and microfluidization method with a droplet size of 66.81 ± 5.31-nm and zeta potential of -24.6 ± 0.72-mV. Further, MLX nanoemulsion was optimized with centrifugation, heating-cooling cycles and transmittance parameters in addition to scale-up feasibility with microfluidizer. Post optimization, MLX-nanoemulsion was tailored as emulgel with Carbopol Ultrez 10 NF and assessed for pH, rheology, textural properties, assay and stability features. The in-vitro release study revealed the Korsmeyer-Peppas release kinetics and ex-vivo skin permeation was improved by 6.71-folds. The skin distribution of MLX-emulgel evinced the transfollicular mode of permeation. In-vivo study indicated the protective action of MLX-emulegl expressed in terms of inflammatory cyctokines level, X-ray analysis of knee joints of rats, histopathology and OARSI (Osteoarthritis Research Society International) scoring. MLX-emulgel treated group displayed lower (P < 0.001) level of COX-2 intensity as compared to positive control group. However, it was comparable (P > 0.05) to the normal control group, MLX oral dispersion, i.v. solution and etoricoxib gel groups. MLX-emulgel showcased an alternative to the long term usage of analgesics for relieving the symptoms of knee OA. CONCLUSION: MLX-emulgel may be a potential candidate for translating in to a clinically viable dosage form in the management of knee OA.


Assuntos
Anti-Inflamatórios não Esteroides , Osteoartrite do Joelho , Ratos , Animais , Meloxicam/farmacologia , Meloxicam/química , Meloxicam/metabolismo , Anti-Inflamatórios não Esteroides/química , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Ratos Wistar , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...